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On the Accuracy of Stable Schemes for 
2D Scalar Conservation Laws 

By Jonathan B. Goodman and Randall J. LeVeque* 

Abstract. We show that any conservative scheme for solving scalar conservation laws in two 
space dimensions, which is total variation diminishing, is at most first-order accurate. 

1. Introduction. We study finite-difference schemes for computing weak solutions 
(e.g., solutions with shocks) to scalar conservation laws of the form 

(1.1) u, +f W., + g(u) = 

in two space dimensions. In one dimension Harten [3] has given conditions which 
guarantee that a scheme is strongly nonlinearly stable in the sense that the total 
variation of the numerical solution does not increase in time. He has also shown how 
to construct schemes which have this property and are second-order accurate on 
smooth solutions. 

By contrast, in two dimensions such schemes do not exist. We show that any 
conservative scheme which is total variation diminishing (TVD) is at most first-order 
accurate. Briefly, the proof goes as follows. For any two-dimensional scheme there is 
an associated one-dimensional scheme with the same order of accuracy. If the 2D 
scheme is TVD, then the corresponding 1D scheme is monotone at least on certain 
initial data and therefore at most first-order accurate by the results of Harten, 
Hyman and Lax [4]. 

While it is not logically necessary for a scheme to be TVD in order to be total 
variation stable, or to converge, we know of no method for computing weak 
solutions that is not TVD and yet can be shown to converge. In any case, 
diminishing total variation is a very desirable property which, needless to say, is 
shared by the exact solution (see [1]). 

In Section 2 we review and slightly extend some known results on monotone 
schemes. These are used in Section 3 to prove our main result. We also make some 
remarks on its significance and limitations. 

2. Monotone Schemes. A finite-difference scheme for the problem (1.1) is said to 
be in conservation form if it is of the form 

(2.1) = Jk- XXC nl, Ink - n -gk) ( 2 .1 )Ui, k Ui, k Xx(fi + l,sk fj, k ) X ( gY,jk +l gJ kk)9 
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where 

x= At/Ax, X= At/Ay 

and the numerical fluxes f and g are functions of neighboring values of U: 

(2.2) fj,k =(f bjp,k-q9 . 
. . j+r,k+J9 

g9.k = g( Ujp,k-q9 *...Uj+r,k+s) 

We assume f and g are consistent with f and g, 

(2.3) f(u,...,u)=(u), g(u,...,u) =g(u), 

and are Lipschitz continuous in all arguments. 
The discrete Li-norm is defined by 

(2.4a) IIUlI = AXy E IUjkl 
j, k 

or, by 

(2.4b) lUll = AxE IJqj 

in one space dimension. The total variation of the grid function U, a discrete 
approximation to JJ Ivul dx dy with Ivul = Iu,I + IuvI, is given by 

(2.5) TV(U) = E [YlvyUI+lk - UjQkl + Ax|L')k+l - jkl] 
kj. 

or, in one dimension, by 

TV(U) = E -UJ+l -Ul. 

We denote the scheme (2.1) symbolically by Un+1 = F(Un). Since we are study- 
ing a single timestep, we will generally suppress the index n and use the notation 

U= F(U). 

We recall two definitions. 
Definition 2.1. The scheme (2.1) is monotone if each component of U is a monotone 

nondecreasing function of U, i.e., if 

(2.6) Uj, k > 
Vj k Vj, k 

.Uj, k Vj, k. 

Definition 2.2. The scheme (2.1) is Ll-contracting if for all U and V, 

(2.7) llU- v- l < IlU - vil. 
These two properties are equivalent. 

PROPOSITION 2.1. The scheme (2.1) is monotone if and only if it is Li-contracting. 

Remark. This proposition, and its proof, are closely related to the lemma of 
Crandall and Tartar [2] which appears, for example, in [1]. 

Proof. Assume that IIU - VII < x, for otherwise (2.7) is automatically satisfied. It 
suffices to consider the case when U and V differ at only a single point. Monotonic- 
ity on general data is equivalent to monotonicity on such data and similarly for 
L,-contraction. This follows by induction on the number of points at which U and V 
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differ. One must use the fact that if W differs from U at one set of mesh points and 

W differs from V at a disjoint set of mesh points then IIU - VII = IIU - Wll + 

11W- VII. 
We suppose Lfk = Vjk for (j, k) # (0, 0) and that 

(2 .8) Uoo > VOO . 

From the conservation form (2.1) of the difference scheme it follows that 

(2.9) E ( Uk "Vk) , (Ljk Vk) = UO u- VOO 
j,k j,k 

Using this, we obtain 

(2.10) j luAy 11 IU I =II k jkP > (Ujk - Vjk) =UO-VOO 

i.e., 

(2.11) lIU - VlJ?iU- Pi/ 

with equality holding if and only if Ujk - Vjk are all of the same sign (which must 

then be positive by (2.8) and (2.9)). Comparing (2.7) and (2.11) we conclude that the 

scheme is Li-contracting if and only if it is monotone, completing the proof. 
In Section 3 we will need to consider schemes in one dimension of the form 

(2.12) ujn?l = L1)n -X (n f n ++fin) 

which have a weaker monotonicity property-we only require monotonicity on 

special data of the form 

{u, j < N, 

(2.13) U N U, j = N, 

tu0 j>N, 

which is monotone, i.e., u0 < UN < u. or u0 > UN >u U.X From the proof of 

Proposition 2.1 we easily obtain the following restricted form: 

COROLLARY 2.1. The scheme (2.12) is monotone on monotone data of the form (2.13) 

if and only if it is L -contracting on pairs of data U, V, both of the form (2.13), which 

differ only atj = N. 

We have shifted the discontinuity toj = N to facilitate the application in Section 
3. Combining this with the results of Harten, Hyman, and Lax [4] gives 

PROPOSITION 2.2. A scheme (2.12) which is LI-contracting on monotone data of the 

form (2.13) is at most first-order accurate at any point where U) n+1 is a twice 

differentiable function of Un. 

Remark. There are many schemes, such as the original Godunov scheme, which 

have Lipschitz continuous fluxes which are not continuously differentiable every- 
where. However, for all known schemes, the fluxes are infinitely differentiable except 

at a few points (e.g., sonic points). Consequently, we believe there are no second-order 
accurate schemes which are L1-contracting on monotone data. 
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There may be an alternative proof of this which does not depend on differentiabil- 
ity. We conjecture that monotone schemes exhibit false entropy production for 
smooth solutions which is O(h) whenever the fluxes are Lipschitz continuous, thus 
implying first-order accuracy. (See Crandall and Majda [1] for entropy fluxes in 2D.) 
We do not pursue this approach here but rather follow the proof of Harten, Hyman 
and Lax [4], who show that a scheme which is Ll-contracting on all data is at most 
first-order accurate (again at points of differentiability, though they do not make an 
issue of this). 

Proof. If 

aU. 
(2.14) aUv >0 forallj,N 

when U, is constant in k, then by [4] the truncation error is of the form h(,8(u)u,), 
+ 0(h2), where ,B is an explicit continuous combination of partials of the form 
(2.14). By conservation and (2.14) it follows that /8 # 0 and, hence, the scheme is 
first-order accurate. To verify (2.14) for constant U we first consider data of the 
form (2.13) for which (2.14) holds by monotonicity and then use continuity of the 
derivatives as u0 -- UN and u. - UN. 

3. First-Order Accuracy of TVD Schemes in 2D. We state the main result 
imprecisely to avoid a complicated (and unenlightening) statement. 

Assertion 3.1. Except in certain unlikely cases, any TVD scheme of the form (2.1) 
in two dimensions is at most first-order accurate. 

Proof. From any scheme of the form (2.1) for the 2D problem (1.1) we can 
construct a scheme of the form (2.12) for the ID problem u, + f(u), = 0 that has 
the same order of accuracy. We show that if the 2D scheme is TVD, then the 
resulting ID scheme will be Ll-contracting on monotone data (2.13). This, together 
with Proposition 2.2, proves the assertion. 

Suppose we apply (2.1) to a grid function U which is independent of y, 

(3.1) Ulk- = v]j,k. 

Then (2.1) reduces to the following ID scheme for V: 

(3.2) pi = 
Vi 

- X x fi + 1 fi) 

where 

fj = f (V t_P, * * *, 9Vi+r) J-J(Uj_p,k-q... 9** Uj+r,k+s). 

The value of k chosen in evaluating f is arbitrary by (3.1). From (2.3) we see that f is 
consistent with the flux function f, 

f(u,. . ,u) =f(u). 

Moreover, (3.2) will be a second-order accurate scheme for u, + f(u)x = 0 if (2.1) is 
second-order on (1.1). 

The total variation as defined in (2.5) is the sum of the x and y variations, 

(3.3a) TVX(U) = Ay Y IUJ+ 1,k -Ujkl 
j, k 
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and 

(3.3b) TV,(U) = Ax E IUj,k+l - Uj,kl = E IIU,k+l - U.,k1, 
j,k k 

where is the ID Ll-norm (2.4b). 
We construct data for which TVx is conserved. Then by (3.3b), total variation in 

2D is related to Li-contraction in ID. Suppose V and W are two one-dimensional 
grid functions satisfying 

(J/=WV= u forj<-2N, 

VJ < V.+ l, W1 < W1 + lfor -2N < j < -N, 

(3.4) V = uo for -N <j < N, 

|Vj > Vj+1, Wj >? Wj+l for N < j < 2N, 

IV/ = Wi = uoo forj > 2N, 

where uo > u. and N is large relative to the stencil size determined by p, q, r and s 
in (2.2). Suppose that L and M are also large integers, and define U from V and W 

to be constant in y along each of 2M horizontal strips of width L, taking the values 
of V and W alternately 

Vi if k = 2k1L + k2 

with 0 < ki < M, O < k2 < L, 

(3.5) Ujk W if k = (2k, + 1)L + k2 

with 0 < k1 < M,O < k2 < L, 
uOO otherwise. 

Then IIU- u.11 < oo and 

(3.6a) TVX(U) = 4LM(uo - u.)Ay. 

(3 .6b) TV,!(U ) = (2M - I)J -t VWil + JIV V- u.11 + IIW W- u.11 . 

Here we mean the one-dimensional L,-norm (2.4b). 
Since N is large compared to the stencil size determined by p, q, r, and s, and Ujk 

is constant inj and k for I jI < N and 0 < k < 2LM, it follows from the consistency 
of (2.1) that 

UOk =U0 forq<k<2LM-s. 

Since Ujk = uO, for I jI sufficiently large, it follows that the one-dimensional variation 

satisfies 

TV(U k) TV(V(U ) forq < k < 2LM- s 

and hence, 

(3.7) TVX(U) > TvX(U) - C, 

where the constant C depends only on possible edge effects near k = 0 and 

k = 2 LM and is independent of L and M. 
In the y-direction we obtain a lower bound on the total variation of U by 

comparing values at the middle of successive strips where the 2D scheme reduces to 
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the 1D scheme (3.2) for L sufficiently large. Suppose V and W result from applying 
the 1 D scheme (3.2) to V and W respectively. Then we obtain 

(3.8) TVV(U) > (2M- 1)IIV-Wll. 

Now suppose the ID scheme is not L1-contracting on V and W and that, conse- 
quently, 

(3.9) || V - W|| = || V - W|| + E6 

with E > 0. Then by (3.6b), (3.7), (3.8) and (3.9), 

TV(U) = TVx(U) + TVJ(U) 

> TVx(U) + TVv(U) +(2M - 1)E -C1, 

where C1 = C + IV - u + W - u0jl. By taking M sufficiently large, we obtain 

(3.10) TV(U) > TV(U). 

If the 2D scheme is TVD, then (3.10) cannot occur and hence the corresponding 1D 
scheme must be L1-contracting on all data V, W of the form (3.4). 

Using this construction, we can show that the ID scheme is also L1-contracting on 
monotone data of the form (2.13). Suppose V and Ware of the form (2.13). Then we 
simply redefine 

j= uOo forj <-N, 

W = uo forj<-N. 

This does not change IV - Wll nor does it change IV - Wll and hence L1-contrac- 
tion on the original data is equivalent to L1-contraction on the redefined data. But 
this new data is of the form (3.4) and hence the scheme is L1-contracting. 

We now apply Proposition 2.2 to conclude that the 1D scheme (and therefore also 
the 2D scheme) is at most first-order accurate. 

Remarks. (1) A. Harten has pointed out to us that our restriction to explicit 
schemes is probably not essential, since implicit schemes are also rather "local". He 
conjectures that our proof would apply to implicit schemes as well by taking L, the 
strip width, to be very large. 

(2) Despite our results, split schemes in 2D seem to work quite well for gas 
dynamics. It would therefore be interesting to prove stability and convergence for 
some second-order accurate 2D scheme for scalar conservation laws. This was in fact 
our original intention. 

(3) The differences between scalars and systems are more pronounced in higher 
dimensions than in one dimension. For example, the Euler equations are not 
well-posed in L1(R2), and gas dynamical shock fronts are more stable than scalar 
shock fronts in two dimensions [5]. 
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